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It is shown that for any n + 1 times continuously differentiable function/and any
choice of n + 1 knots, the Lagrange interpolation polynomial L of degree n satisfies
11/(n)-L(n)11 ~ Ilw(n)II/(n+ 1)1 11/(n+l)ll, where 1111 denotes the supremum norm.
Further, this bound is the best possible. Applications of the above bound to the
differencing formula are suggested. It is also shown that for i = 1, 2, ..., n - 1,
II/U)- LU)II ~ Ilw(J)ll/i!(n + 1 - i)! II/(n+ 1)11. This formula may be considered as a
generalization of a formula due to Ciarlet, Schultz, and Varga (Numerical methods
of high-order accuracy, Numer. Math. 9 (1967), 394-430) and may be compared to
the conjectured best bound IIfU)-LU)II;;; IlwU)II/(n+ 1)1 1I/(n+l)ll. © 1991 Academic

Press, Inc.

STATEMENT OF THEOREMS

Let f(x) E c(n+ Il[a, b] and let a ~ X o< XI < X2'" < X n ~ b. Let L(x) be
the nth order Lagrange polynomial satisfying

i=O, 1, ..., n. (1.1)

The following theorem is attributed to Cauchy and is commonly found in
elementary numerical analysis texts.

THEOREM 1. Let Land f be as above. Then

Ilf(n+I)11
If(x)-L(x)1 ~ Iw(x)1 (n+ I)!' (1.2 )

where w(x) = (x-xo}{x-xd .. · (x-xrJ and where IIII denotes the
supremum norm on [a, b].
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Note 1. Most frequently, Theorem 1 is given with X o= a and X n = b.
The slightly more general form given here follows from the same proof and
is helpful in the proof of Theorem 3.

To see that the right hand side of (1.2) is the smallest possible, take
f(x) = w(x). Equality results for every x. From (1.2) it follows that

(1.3)

Following Schoenberg [9J, we will call this type of bound a Chebychev
bound. Again, substitution of w(x) for f(x) shows that this bound is best
possible.

Classically, Eqs. (1.2) and (1.3) have been the object of a good deal of
study. For example, Chebyshev showed how to minimize Ilw(x)11 by
choosing the knots Xi = arccos [(2i + 1)/(2n + 2)J. Concerning II f U ) - L (j) II,
generally only order of approximation results are given. The following
conjecture is proposed.

CONJECTURE 1. Let f and L be as above. Then for all integers j,°~ j ~ n, the following holds

(1.4 )

If (1.4) is true, then by the substitution of w(x) for f(x), it is the best
possible result. The conjecture can be justified numerically as will be
discussed below.

Note 2. If Conjecture 1 is true then it also holds for the case of
repeated roots, i.e., for Hermite interpolation.

To see that this is so, consider the Newton representation for Lagrange
or Hermite interpolation

n

LnLf,xJ= I f[XO,Xl,···,XkJ(X-Xo)(x-xd···(X-Xk_l), (1.5)
k~O

where f[xo, Xl' ..., Xk] denotes the divided difference of the points f(x;),
i = 0, 1, ..., k and where the Xi are not necessarily distinct. As the divided
difference over an arbitrary set of points with repetitions is the limit of
divided differences of distinct points [10] it follows that any Hermite inter­
polation derivative can be expressed as the limit of a sequence of Lagrange
interpolations. As the distinct roots coalesce, so also do the corresponding
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w(J)'s converge to the w U) with repeated roots. The bound for the case of
the coalesced roots therefore follows from the bound for distinct roots.

Several attempts have been made to prove Conjecture 1, most notably by
Bojanov and Varma. The following special case will be shown here.

THEOREM 2. Conjecture 1 holds for j = n.

The proof follows from an identity due to Polya and used by Curry and
Schoenberg [4]. For the derivatives j = 1, 2, ..., n - 1, IlfU)- LU)II can be
bounded as follows.

THEOREM 3. Let f and L be as above. Then

(1.6)

Letting n + 1 = 2k and considering two point Hermite interpolation as a
limit as knots coalesce to °and 1, we have the case of Ciarlet, Schultz, and
Varga [3J which can be considered as a special case of (1.6), where
w(x) = (x - a)k(b - X)k. As in the case of Ciarlet, et al., the proof extends
the classical proof of Theorem 1.

PRELIMINARIES

The proof of Theorem 2 requires some machinery. The following facts
are used in the proof. Let L(x) =: L[f(x), x J be the Lagrange interpola­
tion polynomial of degree n satisfying Eq. (1.1). Then we can employ the
Lagrange representation

L(x) = f. f(xJ w(~) .
i~O (x-xJw (xJ

(2.1 )

(2.2)

Without loss of generality, we will prove Theorem 2 on the interval [0, 1].
Letf(x) E c(n+ 1)[0,1]. Then by the Peano kernel representation (see [5J)

I f(n+I)(t)
f(x) - L(x) = f K(x, t) , dt,

o n.

where

K(x, t) = (x- t): -L[(x- t):, x]

_( )n ~ (xi-t):w(x)
-x-t -L.

+ i~O(X-X;)w'(x;)
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and where

167

{
(x- tt

(x- t): = 0
for x- t~O
for x- t<O.

By puttingf(x)=w(x)/(n + 1)! in (2.2), we obtain

f
l K(x, t) dt = w(x) .
o n! (n+l)!

(2.3 )

Differentiating (2.2) j times, where j ~ n, we have

1 f(n+ 1)(t)
f(J)(x)-L(J)[f,xJ=f K(J,O)(x,t) dt. (2.4)

o n!

In particular, if (2.2) is differentiated n times, we have

From (2.4) follows the pointwise bound

1 Ilf(n+l)11
If(J)(x)-L(J)[f,XJI~f IK(J,O)(x,t)ldt!,.-,- .

o I n.

The bound (2.6) is pointwise exact in the sense that

f
l IK(J,O)(x, t)1 {lfJ)(x) - L(J)[f, xJI)

dt= sup (n+l)~'
o n! fEC1nT1l[O,I] Ilf II J

(2.6)

Thus determination of a pointwise exact bound is in theory possible by
evaluating kernel expressions of the form of (2.6). Such an exact evaluation
was given for two-point cubic and quintic Hermite interpolation by
Birkhoff and Priver [1 J, by use of the symbolic manipulation package,
MACSYMA. More generally, an APL program due to Howell and Diaa
([6J, available on request), constructs and approximately integrates
kernels for derivative error. By such efforts, Conjecture 1 can be verified for
specific cases of interpolatory polynomials of a given degree and specified
knots.

In order to prove the conjecture for the nth derivatives of Lagrange
polynomials of degree n, we will use the following additional identities.
Consider the kernel expression

(2.7)
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used by Curry and Schoenberg [4] to develop properties of spline func­
tions. Concerning M, they showed the following properties

(i) M(t»O, ifO<t<l;

(ii) M(t)=Oift~Oort~l;

(ii) f6 M(t) dt = 1.

PROOF OF THEOREM 2

It follows from (i) and (ii) that for a < f3 we have

0<rM(t, Xo, Xl> ..., x n) dt
rt.

Hence,

(3.1 )

(3.4)

is a monotone decreasing function and is strictly decreasing for 0 < t < 1.
From (2.5) we have

If(n)(x) - L(n)[f, x] I~rI(x - t)~ - ±(x; ~ t)':.- Idt Ilf(n+ l)(t)II.
o i~O w(x;)

~(I(X-t)~ -N(t)1 dtllpn+l)(t)ll. (3.2)

Define

en(x) =: ( I(x - t)~ - N(t)1 dt =r[1- N(t)] dt +rN(t) dt. (3.3)

Thus e~(x)= 1-2N(x) and e~(x)= -2N'(x) >0. From this it follows that

f
l IK(n,Ol(x t)!

Ilenll=max{en(O),en(l)}= max " dt.
O",x",l 0 n.

From (2.3), we have

fl K(n,Ol(x, t) dt = w(nl(x) .

° n! (n + I)!
(3.5)
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Since K(n,O)(o, t) < °and K(n,O)(1, t) > 0, 0< t < 1, we have on recalling
(3.3) the further equality

{ I
IK(n,O)(O, t) II K(n,Ol(l, t) )

Ilenll=max - ,dt, I dt(° n. ° n. J

= max {_ w(n)(o) w(nl(1)~.
(n+1)!'(n+1)!j (3.6)

From (2.6), we have

Ilf(nl - L(n)11 ~ Ilenll Ilf(n+ 1)11

~max {_ w(n)(o) w(nl(l)} Ilpn+1lli
(n+ 1)!' (n+ 1)!

~ Ilw(n)11 Ilf(n+I)11 (3.7)
"'(n+l)! .

This completes the proof of Theorem 2.

PROOF OF THEOREM 3

We first show the theorem for the case of the first derivative, that is we
show

11f'-L'11 ~ Ilw;llllpn+I)II.
n.

(4.1 )

Note first that there are at least n zeros IJi,l off' - L', where for each i,
1~ i ~n, Xi ~ IJi,l ~ Xi+ I' Define w~(x) = n7= I (x -IJi,I)' In this sense L' is
an interpolatory polynomial of degree n. It follows from Theorem 1 (see
Note 1) that for any x such that a ~ x ~ b

1f'(x)-L'(x)1 ~ Iw~(x)lllpn+l)II.
n!

(4.2)

For any given x, choose k depending on x such that Ix - xkl =
mino<;;i<;;nlx-x;i. Such a k exists though there may be a choice. Denote
Pxl(t)=w(t)/(t-Xk)=ni,ok (t-xJ Consider the case that xj<x<xj+I'
We have that Xo< IJI,1 < XI < IJ2,1 < X2'" <Xj < IJj,1 < Xj + 1 < ... < Xn- 1<
IJn,1 < Xn, and k equaling either j or j + 1. Then for i = 1, 2, ..., j -1, we have
IX-IJi,l1 < Ix-xi_ll· For i = j, we have IX~IJui < max{ Ix-xjl, Ix-xj+d}.
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For i=}+1,}+2, ...,n, we have IX-'1i,II<lx-xJ Then for the already
fixed x, we have

Similarly, (4.3) holds also for the case that x is chosen so that x = xj for
some }, or for a ~ x < x o, or for X n < x ~ b and thus for any fixed x,
a~x~b.

Continuing to hold x arbitrary but fixed, we next compare
maxa,,;;;t,,;;;bIPxl(t)1 = IPxl(tc)1 to Iw'(tJI. Of course, we do not know
whether tc is unique. We therefore make the comparison at all critical
points of Pxl ' We have

(4.5)

or tc= a or tc= b. If we can show that for t ~ X o and t;:' X n

(4.6)

we will have demonstrated for the arbitrary fixed x that

def defIIPxll1 = sup IPxl(t)1 ~ Ilw'll = sup Iw'(t)l. (4.7)
a~t~b a~t~b

To show (4.6) define (recalling (4.4))

Q(t) = w'(t) - P xl (t) = (t - x k ) P~l(t) (4,8)

a polynomial of degree n with all its n zeros inside [xo, x n ], We can
express w' and Pxl in terms of their respective n roots

n-l
w'(t)=(n+l) TI (t-'1J,

n-l
Pxl (t) = TI (t - ~J,

i~O

Xo < '1i < X n (for all i)

Xo ~ ~i ~ X n (for all i).

Thus lim Hoo (w'(t)/Pxl (t))=n+1. Since there are no zeros of Q(t) for
t>xn, we must have w'(t)/Pxl(t) > 1 for t>xn- Thus Iw'(xn)I;:,IPxl(xn)l.
A similar argument applies when t < X o'
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Summing up the argument, we string together the inequalities
(4.2)-(4.5), (4.7). For arbitrary x, a~x~b (where in the intermediate
inequality we take Ix - xkl minimal for the given x),

1f'(x)-L'(x)1 ~ IW~(X)lllj(n;1)11
n.

<IP ()lllj(n+l)11
--..;: xl X ,

n.

< IP (t)1 Ilj(n+ 1)11
--..;: xl c ,

n.

II f(n+ 1)11
< I '(t)1 =J ___
--..;: W C I'n.

where tc is a critical point such that IPxli attains its maximum.
Hence, for all x, a ~ x ~ b, we have

(4.9)

This completes the case for the first derivative.
For the case of the jth derivative, 1~ j ~ n, fix x arbitrary in [a, b]. We

have analogous to (4.2),
Iij(n+l)11

Ij(J)(x)-L(J)(x)1 ~ Iwy)(x)1 (~+ 1- j)l' (4.10)

where wy)(x) = TI7':;11-j (X-IJi,j) and where IJi,j are such thatj(J)(IJd=
L(J)(IJi ,,) and Xi<IJij'<Xi+j,. For the given x, we can choose consecutive
',' def

knots Xb x k +1, ... , Xk+ j-l so that PXj(t) = I1i"'k,k+ l" ..,k+ j_ 1 (t - x;) and

(4.11 )

For the particular fixed x, we then construct a string of intermediate
monic polynomials, Pxm' where for each m, 0 ~ m ~ j,

is a monic polynomial of degree n + 1- m and where PxO(t) = w(t).
Differentiating j + 1 - m times gives

(j + 1- m) pCjm-m)(t) + (t - Xk+m-l) pCjm+ 1- m)(t) = PCjm+1 1m)(t),

where (j + 1 - m) PCjm- m)( t) is a polynomial of degree n + 1 - j with leading
coefficient (j + 1 - m)(n + 1 - m)!/(n + 1 - j)! compared to the leading
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coefficient (n + 2 - m )!j(n + 1 - j)! of the polynomial pVm+-! im)(t) of the
same degree n + 1- j. This gives a ratio (n + 1-J)IU + 1- m) >
(n + 1 - j)/(n + 1 - m) ~ 1 of the leading coefficients. Comparing all critical
points, we have by the same logic as for the first derivative case the
inequality

IIPU+ 1-m)11
IIPU-m)ll:::;; . xm-1 .

xm J+1-m
(4.12 )

(4.13 )

Applying (4.10), (4.11), and inductively (4.12), we have for fixed x andj

IfU)(x)-LU)(x)l:::;; IwU)(x)1 Ilf(n+OI!
J (n+1-J)!

Ilf(n+1)11
:::;; IPxj(x)1 (n + 1- j)!

Ilf(n+ °11
:::;; IIPxjl1 (n + 1- j)!

IIPU)II Ilf(n+1)11
~~---'----
'" j! (n+1-j)!

IlwU)11 Ilf(n+1)11
=f(n+1-j)!'

which is the desired result.

ApPLICATIONS

The nth derivative L(n) of the Lagrange interpolant satisfying (1.1) is
merely the nth divided difference off times n!, i.e.,

L (n)- 'f[ ]-no XO,Xj,""Xn '

As such L(n) is frequently used as an approximation for f(n). The bound on
Ilf(n) - Vn)11 is therefore of some interest. Suppose that Ilf(n +1)11 :::;; 1. Then
by Theorem 2 we have

and we can minimize lIf(n) - L(n)11 by choosing Xi to minimize Ilw(n)ll.
Differentiating (2.1) we have

(5.1 )

w(n)(x)

(n + I)!

n x.
x-I-'.

i=O n + 1
(5.2)
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Ilw(n)11 will be minimized when 2:7=0 xJ(n + 1) = (b + a)/2, that is when the
average of the differenced points is in the middle of the interval. Thus
minimization of Ilpn)-L(n)ll/llf(n+l)11 on an interval, a:O:;;x:o:;;b can be
accomplished by any knot choices symmetric about the interval midpoint.

For other derivatives, the bound in terms of IlwU)11 indicates the
desirability of using knots chosen so that wU) has roots as the Chebychev
nodes.
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